Harmonic-Killing vector fields on Kähler manifolds

نویسنده

  • C.T.J. Dodson
چکیده

In a previous paper we have considered the harmonicity of local infinitesimal transformations associated to a vector field on a (pseudo)-Riemannian manifold to characterise intrinsi-cally a class of vector fields that we have called harmonic-Killing vector fields. In this paper we extend this study to other properties, such as the pluriharmonicity and the α-pluriharmonicity (α harmonic 2-form) of the local infinitesimal transformations, obtaining characterisations of these kinds of vector fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds

From the existence of parallel spinor fields on CalabiYau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers. When the ambient manifold is Kähler-Einstein with positive scalar curvature, and...

متن کامل

Scalar Curvature, Killing Vector Fields and Harmonic One-forms on Compact Riemannian Manifolds

It is well known that no non-trivial Killing vector field exists on a compact Riemannian manifold of negative Ricci curvature; analogously, no non-trivial harmonic one-form exists on a compact manifold of positive Ricci curvature. One can consider the following, more general, problem. By reducing the assumption on the Ricci curvature to one on the scalar curvature, such vanishing theorems canno...

متن کامل

Analytic fields on compact balanced Hermitian manifolds

On a Hermitian manifold we construct a symmetric (1, 1)tensor H using the torsion and the curvature of the Chern connection. On a compact balanced Hermitian manifold we find necessary and sufficient conditions in terms of the tensor H for a harmonic 1-form to be analytic and for an analytic 1form to be harmonic. We prove that if H is positive definite then the first Betti number b1 = 0 and the ...

متن کامل

Spinc geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds

From the existence of parallel spinor fields on Calabi-Yau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers which generalize those obtained by Smoczyk in [49]. When the ambient manifold is...

متن کامل

Harmonic-killing Vector Fields *

In this paper we consider the harmonicity of the 1-parameter group of local infinitesimal transformations associated to a vector field on a (pseudo-) Riemannian manifold to study this class of vector fields, which we call harmonic-Killing vector fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001